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Abstract. Deep-learning-based object detection methods show promise
for improving screening mammography, but high rates of false positives
can hinder their effectiveness in clinical practice. To reduce false posi-
tives, we identify three challenges: (1) unlike natural images, a malignant
mammogram typically contains only one malignant finding; (2) mam-
mography exams contain two views of each breast, and both views ought
to be considered to make a correct assessment; (3) most mammograms
are negative and do not contain any findings. In this work, we tackle the
three aforementioned challenges by: (1) leveraging Sparse R-CNN and
showing that sparse detectors are more appropriate than dense detectors
for mammography; (2) including a multi-view cross-attention module
to synthesize information from different views; (3) incorporating multi-
instance learning (MIL) to train with unannotated images and perform
breast-level classification. The resulting model, M&M, is a Multi-view
and Multi-instance learning system that can both localize malignant
findings and provide breast-level predictions. We validate M&M’s detec-
tion and classification performance using five mammography datasets. In
addition, we demonstrate the effectiveness of each proposed component
through comprehensive ablation studies.
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1 Introduction

Screening mammography helps detect breast cancer earlier and has reduced the
breast cancer mortality rate significantly [4]. Computer-aided diagnosis (CAD)
software was developed to aid radiologists, but its effectiveness has been ques-
tioned following recent large-scale clinical studies [6]. In particular, the high
rate of false positive (FP) predictions of CAD can cause a significant reduc-
tion in radiologists’ specificity [6]. Surprisingly, recent deep learning literature
[3, 5, 13, 16, 20, 21, 32] focuses on improving recall without considering the need
to operate at low FP rates. As shown in Fig. 1a, most works focus on reporting
recalls outside the clinically relevant region of less than 1 FP/image.
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ar
X

iv
:2

30
8.

06
42

0v
1 

 [
cs

.C
V

] 
 1

1 
A

ug
 2

02
3



2 Y.N. Truong Vu et al.

(a) Free response operating characteris-
tic (FROC) curves on DDSM.
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(b) Quantitative detection evaluation with
and without negative images on OPTIMAM.

Fig. 1: Two gaps between deep learning literature and clinical applicability. (a)
Few works report detailed performance in the clinically relevant region of less
than 1 FP/image. M&M surpasses previous works by a large margin in this
region. (b) Typical evaluation datasets are not representative: they contain from
zero (CBIS-DDSM [9]) to few negative cases (DDSM [8], INBreast [17]). To
illustrate the distribution shift, we train four popular dense detectors using a
standard setup that includes only annotated malignant and benign cases [1, 13,
16]. We utilize OPTIMAM [7], a large dataset with a significant proportion of
negatives (Tab. 1), for training and evaluation. Across all dense models, there
is a large performance drop in the clinically representative setting that includes
negative images. This means that the dense models are producing too many FPs
on negative images. Our model, M&M, successfully tackles this performance gap.

To tackle the high rate of false positives in mammography, we identify three
challenges: (1) A malignant mammogram typically contains only one malignant
finding. This is different from natural images: for example, an image in COCO
contains on average 7.7 objects [11]. This calls into question the usage of dense
detectors for mammography; (2) A standard screening exam consists of two views
per breast. Both views are essential in making a clinical decision because a finding
may appear suspicious in one view but not the other; (3) Most mammograms
are negative: they do not contain any findings. However, excluding negative
images from training and evaluation leads to a distribution shift since negative
images are abundant in clinical practice. Concretely, the false positive rate is
low for a typical evaluation data distribution but much higher for a clinically-
representative data distribution, as shown in Fig. 1b.

In this work, we tackle these challenges and propose a Multi-view and Multi-
instance learning system, M&M. M&M is an end-to-end system that detects
malignant findings and provides breast-level classification. To achieve these goals,
M&M leverages three components: (1) Sparse R-CNN to replace dense anchors
with a set of sparse proposals; (2) Multi-view cross-attention to synthesize in-
formation from two views and iteratively refine the predictions, and (3) Multi-
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instance learning (MIL) to include negative images during training. Ultimately,
each component contributes to our goal of reducing false positives.

We validate M&M through evaluation on five datasets: two in-house datasets,
two public datasets — DDSM [8] and CBIS-DDSM [9], and OPTIMAM [7]. We
perform ablation studies to verify the contribution of each component of M&M.
To summarize, our contributions are:

1. We show that sparsity of proposals is beneficial to the analysis of mammo-
grams, which have low disease prevalence (Sec. 2.1). With Sparse R-CNN,
M&M generalizes better to clinically-representative data, where the majority
of images are negative, i.e., have no findings (Tab. 2);

2. We incorporate a simple and efficient cross-view multi-head attention module
for mammography analysis (Sec. 2.2). With multi-view reasoning, M&M
improves the recall at 0.1 FP/image by 8.6%, as shown in Fig. 4;

3. We leverage MIL to include images without bounding boxes during training
(Sec. 2.3). Accordingly, M&M sees seven times more images during training.
With MIL, M&M improves the recall at 0.1 FP/image by 12.6% (Fig. 4). Fur-
thermore, M&M can provide breast-level classification predictions, achieving
AUCs of more than 0.88 on four different datasets (Tab. 3).

2 M&M: A Multi-view and MIL System

2.1 Sparse R-CNN with Dual Classification Heads

The sparsity of malignant findings calls into question the use of dense detectors.
As shown in Fig. 1b, dense detectors generalize poorly to negative images as they
produce too many false positives. Thus, we propose to use Sparse R-CNN [24].

Sparse R-CNN utilizes a sparse set of N learnable proposals consisting of b0 ∈
RN×4 coordinates and h0 ∈ RN×D features. The architecture uses 6 cascading
heads to iteratively refine the proposals. Within the ith head, the proposals hi−1

first interact with themselves via self-attention, and then generate DynamicConv
(Fig. 4, [24]) to interact with RoI features cropped by bi−1. The resulting outputs
hi ∈ RN×D are features for the (i+1)th head. In addition, a regression module is
applied to hi to generate boxes bi ∈ RN×4, and a classification module generates
scores pi ∈ RN×C , with C being the number of classes.

We modify Sparse R-CNN to include dual classification modules (Fig. 2).
First, an objectness module produces objectness logits oi ∈ RN to distinguish
all findings — malignant and benign — from the background. By utilizing all
findings, the objectness head increases the training sample size [1,13,16], but also
increases FPs because it flags benign findings. To mitigate this side effect, we
include a dedicated malignancy module [Wi,bi] to generate malignancy logits
mi ∈ RN that is trained to distinguish malignant from benign findings:

mi = oi − SoftPlus(Wihi + bi). (1)

The strictly positive function SoftPlus(x) = log(1 + ex) is chosen to enforce
consistency: a high objectness logit oi is required to generate a high malignancy
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Fig. 2: M&M tackles false positives through (1, blue, dotted arrows) leveraging
the Sparse R-CNN cascade architecture to iteratively refine sparse learnable
proposals into predictions, (2, red, solid arrows) incorporating a cross-attention
module to reason about relations between objects across two views, and (3, green,
dashed arrows) utilizing image and breast MIL pooling to train with images that
do not have lesion annotations.

logit mi. Thus, at the finding level, we obtain the following loss

Llesion = Lmalignant + Lobjectness + 2Lgiou + 5LL1, (2)

where Lgiou and LL1 are regression losses as in Sparse R-CNN. Lobjectness and
Lmalignancy are focal losses applied to the predicted objectness oi and the pre-
dicted malignancy mi across all cascading heads 1 ≤ i ≤ 6, respectively.

2.2 Multi-view Reasoning

A standard screening exam includes two standard views of each breast. The cran-
iocaudal (CC) view is taken from the top down, while the mediolateral oblique
(MLO) view is captured from the side at an oblique angle. Radiologists examine
both views when making a clinical decision as a finding may look innocuous in
one view but suspicious in the other.

To enable multi-view reasoning, M&M incorporates a cross-attention module
[28] into every cascading head. Recall that within the ith cascading head, self-
attention is first applied to proposal features hi−1 to reason about the relations
between objects. After this self-attention module, we introduce a cross-attention
module (Fig. 2, Appendix Algo. 1) to reason about the relations between CC



M&M: A Multi-view and MIL Sparse Detector 5

view feature hCC
i−1 and MLO view feature hMLO

i−1 :

h̃CC
i−1 = hCC

i−1 +MultiHeadAttn(Q = hCC
i−1, V = hMLO

i−1 ,K = hMLO
i−1 ), (3)

h̃MLO
i−1 = hMLO

i−1 +MultiHeadAttn(Q = hMLO
i−1 , V = hCC

i−1,K = hCC
i−1). (4)

The enhanced embeddings h̃CC
i−1, h̃MLO

i−1 then generate DynamicConv to interact
with RoI features and produce new features hCC

i , hMLO
i for the (i + 1)th head.

Thus, with the proposed cross-attention module, the CC view’s proposal features
are refined iteratively using the MLO view’s proposal features and vice versa.

2.3 Multi-instance Learning

Mammogram annotation is costly to obtain due to a dependency on radiolo-
gists. This high cost means that bounding boxes are often unavailable. Further,
most mammograms are negative: they do not contain any findings. Yet, a model
generalizes poorly if these negative images are dropped during training (Fig. 1b).

Since image- and breast-level labels are available, we adopt an MIL module
to include images without bounding boxes during training. To compute image-
and breast-level scores, we leverage the proposal malignancy logits mi (Eq. (1)).
Since an image is malignant if it contains a malignant lesion, we obtain image-
level scores by applying the NoisyOR function f(x) = 1−

∏N
k=1(1−x[k]) to the

malignancy probabilities pi = Sigmoid(mi) ∈ RN . Next, as CC and MLO views
offer complimentary information on a breast, we obtain breast-level malignancy
score by averaging the image-level scores across these views.

We apply cross-entropy losses Limage and Lbreast at the image and breast
level for all training samples. The lesion loss Llesion (Eq. (2)) is only applied for
annotated lesions. We thus obtain the following total training loss for M&M:

L = 1annotated lesionLlesion + 0.5Limage + 0.5Lbreast. (5)

3 Experiments

Implementation Details. We use PyTorch 1.10. The training settings follow
Sparse R-CNN [24]. We apply random horizontal flipping and random rotation.
We resize the images’ shorter edges to 2560 with the larger edges no longer than
3328. We utilize a COCO-pretrained PVT-B2-Li backbone [30]. We use AdamW
optimizer with 5 × 10−5 learning rate and 0.0001 weight decay. The model is
trained for 9000 iterations, and the learning rate is scaled by 0.1 at the 6750 and
8250 iterations. Each batch contains 16 breasts (32 images). We employ a 1:1
sampling ratio between unannotated and annotated images.

Datasets. We utilize three 2D digital mammography datasets: (1) OPTIMAM :
a development dataset derived from the OPTIMAM database [7], which is funded
by Cancer Research UK. We split the data into train/val/test with an 80:10:10
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Table 1: Dataset statistics. We report the number of breasts in each dataset,
broken down by 3 categories: malignant, benign, and negative. Malignant breasts
contain findings with positive biopsy outcomes. Benign breasts contain findings
that are determined to be non-malignant after additional follow-up. Negative
breasts do not contain any radiologist-marked findings. In the parentheses, we
report the number of breasts with bounding box annotations. “Bbox” indicates
whether bounding box annotations are available.

Datasets Bbox Malignant (Ann.) Benign (Ann.) Negative (Ann.)

OPTIMAM ✓ 4,838 (4,245) 1,999 (567) 26,003 (2)
Inhouse-A 496 (0) 2,128 (0) 2074 (0)
Inhouse-B 243 (0) 7,797 (0) 47,929 (0)
DDSM ✓ 624 (624) 555 (555) 2,877 (1)
CBIS-DDSM ✓ 312 (310) 347 (336) 0 (0)

Table 2: Quantitative detection evaluation on OPTIMAM. ∆ denotes the AP
gap between evaluating with and without negative images.

Model APmb AP ∆ R@0.1 R@0.25 R@0.5

RetinaNet [10] 52.4 25.5 -26.9 53.3 73.1 83.0
FCOS [26] 52.2 27.9 -24.3 52.0 77.4 87.0
Faster R-CNN [19] 52.5 27.1 -25.4 51.5 71.2 84.1
Cascade R-CNN [2] 52.7 29.7 -23.0 54.9 77.0 86.2
Sparse R-CNN [24] 53.2 36.2 -17.0 64.3 77.0 85.5
M&M (ours) 57.1 53.6 -3.5 87.7 90.9 92.5

ratio at the patient level; (2) Inhouse-A: an evaluation dataset collected from
a U.S. multi-site mammography operator; (3) Inhouse-B : an evaluation dataset
collected from a U.S. academic hospital (see [18], Sec. 2.2 for more details on the
inhouse datasets). We also utilize two film mammography datasets: (4) DDSM:
a dataset maintained at the University of South Florida [8]. We followed the
methods by [3, 5, 13, 16] to split the test set; (5) CBIS-DDSM: a curated subset
of DDSM [9]. We only include breasts that have one CC view and one MLO
view. Dataset statistics are reported in Tab. 1.

Metrics. We report average precision with Intersection over Union from 0.25
to 0.75. APmb denotes average precision on the set of annotated malignant and
benign images. AP denotes average precision when all data is included. We re-
port free response operating characteristic (FROC) curves and recalls at various
FP/image (R@t). Following [3,5,16,29], a proposal is considered true positive if
its center lies within the ground truth box. For classification, we report the area
under the receiver operating characteristic curve (AUC).

Detection Results. Tab. 2 presents quantitative detection evaluation on OP-
TIMAM. All dense detectors [2, 10, 19, 26] suffer a large ∆ gap of more than 23
points (pt) between excluding and including negative images. Large ∆ means
the models are producing too many FPs on negative images. Sparse R-CNN [24]

http://www.eng.usf.edu/cvprg/mammography/database.html
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=22516629#225166298fe72482d5b94b979faa31a2a90dad3f
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Fig. 3: Qualitative Evaluation. Left: Model without multi-view (row 4 of Fig. 4)
produces a loose box on the CC view and misses the finding on the MLO view.
Right: M&M produces tight boxes around the finding in both views.

Table 3: Quantitative classification evaluation. (a) On three private datasets, we
use two open-sourced mammography classifiers as baselines [23, 25]. All models
were trained only on OPTIMAM. We report AUC at both the breast and the
exam level, except for Inhouse-A, where breast-level labels are unavailable. (b)
We train M&M on CBIS-DDSM and compare breast AUC with recent literature.
(* Tulder et al. [27] report results using five-fold cross validation.)

(a) Private Datasets

Model OPTIMAM Inhouse-A Inhouse-B

Breast
AUC

Exam
AUC

Exam
AUC

Breast
AUC

Exam
AUC

GMIC [23] 0.911 0.896 0.814 0.815 0.796
HCT [25] 0.923 0.912 0.816 0.817 0.793
M&M (ours) 0.960 0.942 0.920 0.910 0.898

(b) CBIS-DDSM

Model Breast
AUC

ResNet50 [14] 0.724
Shared ResNet [31] 0.735
PHResNet50 [14] 0.739
Cross-view Transformer [27] 0.803∗

M&M (ours) 0.883

generalizes significantly better with a gap of 17pt. This shows the importance of
sparsity for reducing FP. By adding both multi-view and MIL, M&M success-
fully reduces the ∆ gap to 3.5pt. With this performance gap closed, M&M is
able to achieve a high recall of 87.7% at just 0.1 FP/image.

Fig. 1a compares M&M with recent literature evaluated on DDSM. M&M
adopts the same DDSM splits used by [3,12,13,16,33], while [5,21,32] use other
splits. M&M (87% R@0.5) outperforms all recent SOTA with the same test split,
including 2022 SOTA [33] (83% R@0.5), by at least 4%.

Classification Results. Tab. 3a reports M&M’s breast-level and exam-level
classification results on OPTIMAM and the two inhouse datasets. We use GMIC
[23] and HCT [25] as baselines since they are open-sourced classifiers developed
for mammography. All three models were trained only on OPTIMAM. For all
models, the breast-level score is the average of the CC score and MLO score,
while the exam-level score is the max of the left breast score and right breast
score. Both baseline models suffer large generalization drops of approximately
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Dual Multi MIL APmb AP ∆ R@0.1 Breast
heads -view AUC

50.7 35.4 -15.3 65.1 -
✓ 54.1 40.4 -13.7 67.8 -
✓ ✓ 54.3 48.4 -5.9 76.4 -
✓ ✓ 54.5 50.9 -3.6 80.4 0.950
✓ ✓ ✓ 55.2 55.6 0.4 86.3 0.954

Fig. 4: Effect of M&M’s components on classification and detection performance.

0.08–0.12 exam AUC when evaluated on Inhouse-A and Inhouse-B. In compar-
ison, M&M has smaller performance gaps of 0.02 on Inhouse-A and 0.04 on
Inhouse-B. Similar observations for other classifiers, such as EfficientNet, are
reported in the appendix.

Tab. 3b compares M&M with recent literature reporting on the public CBIS-
DDSM dataset. In particular, M&M outperforms the cross-view transformer [27]
and PHResNet50 [14] by 0.08 and 0.14 breast AUC, respectively.

Qualitative Evaluation. Fig. 3 presents a qualitative evaluation of the multi-
view module. With multi-view, M&M produces a tighter box on the CC view
and recovers a missed finding on the MLO view.

Ablation Studies. Fig. 4 presents ablation results using the OPTIMAM val-
idation split. On the left, we demonstrate how each component of M&M con-
tributes to closing the gap ∆ between evaluating with and without negative
images. Notably, without using any extra training samples, multi-view reason-
ing reduces ∆ to only −5.9pt (Row 3). MIL allows the model to train with
significantly more negative images, reducing ∆ to −3.6pt (Row 4). On the right
of Fig. 4, the FROC curves show how each component of M&M improves recall
significantly at low FP/image. In particular, M&M’s recall at 0.1FP/image is
86.3%, +21.2% over vanilla Sparse R-CNN.

Further studies. In the appendix, we present more qualitative evaluation as
well as further ablation studies on (1) number of learnable proposals, (2) different
MIL schemes, (3) backbone choices and (4) positional encoding.

4 Discussion and Conclusion

We present M&M, an end-to-end model leveraging multi-view reasoning and
multi-instance learning for mammography detection and classification.
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As a detector, M&M offers significant improvement in recall at low FP/image
(Fig. 1a, Tab. 2). This success comes from three points of advancement. First,
unlike previous works that do not consider the impact of sparsity [13,16,33], we
show that sparsity of proposals is beneficial for false positive reduction (Tab. 2).
Second, M&M incorporates multi-view reasoning through iterative application
of cross-attention and proposal refinement in the cascading heads. M&M’s multi-
view module is effective (Fig. 4) yet simple, requiring neither positional encoding
[13,16,32] nor extra proposal correspondence annotations [33]. Finally, our MIL
formulation allows for training with representative data distribution in an end-
to-end one stage pipeline. This is more advantageous than previous pipelines
that require additional stages or classifiers to reduce false positives [15,22,29].

As a classifier, M&M establishes strong performance on several datasets
(Tab. 3). M&M offers two advantages over image classifiers: (1) Image classifiers
are often pre-trained as patch classifiers with patches cropped from bounding box
annotations [14, 23, 25]. In comparison, M&M utilizes these bounding boxes to
learn localization and can be trained directly in a single stage from COCO/Im-
ageNet weights; (2) Image classifiers offer limited explainability, while M&M’s
breast-level prediction is more interpretable through its localization ability.

References

1. Agarwal, R., Diaz, O., Lladó, X., Yap, M.H., Martí, R.: Automatic mass detection
in mammograms using deep convolutional neural networks. Journal of Medical
Imaging 6(3), 031409 (2019) 2, 3

2. Cai, Z., Vasconcelos, N.: Cascade r-cnn: Delving into high quality object detection.
In: CVPR (2018) 6

3. Campanini, R., Dongiovanni, D., Iampieri, E., Lanconelli, N., Masotti, M.,
Palermo, G., Riccardi, A., Roffilli, M.: A novel featureless approach to mass detec-
tion in digital mammograms based on support vector machines. Physics in Medicine
& Biology 49(6), 961 (2004) 1, 6, 7

4. Duffy, S.W., Tabár, L., Yen, A.M.F., Dean, P.B., Smith, R.A., Jonsson, H., Törn-
berg, S., Chen, S.L.S., Chiu, S.Y.H., Fann, J.C.Y., et al.: Mammography screening
reduces rates of advanced and fatal breast cancers: Results in 549,091 women.
Cancer 126(13), 2971–2979 (2020) 1

5. Eltonsy, N.H., Tourassi, G.D., Elmaghraby, A.S.: A concentric morphology model
for the detection of masses in mammography. IEEE transactions on medical imag-
ing 26(6), 880–889 (2007) 1, 6, 7

6. Fenton, J.J., Abraham, L., Taplin, S.H., Geller, B.M., Carney, P.A., D’Orsi, C.,
Elmore, J.G., Barlow, W.E., Consortium, B.C.S.: Effectiveness of computer-aided
detection in community mammography practice. Journal of the National Cancer
institute 103(15), 1152–1161 (2011) 1

7. Halling-Brown, M.D., Warren, L.M., Ward, D., Lewis, E., Mackenzie, A., Wallis,
M.G., Wilkinson, L.S., Given-Wilson, R.M., McAvinchey, R., Young, K.C.: Op-
timam mammography image database: a large-scale resource of mammography
images and clinical data. Radiology: Artificial Intelligence (2020) 2, 3, 5

8. Heath, M., Bowyer, K., Kopans, D., Moore, R., Kegelmeyer, P.: The digital
database for screening mammography. In: Proceedings of the Fifth International
Workshop on Digital Mammography. Medical Physics Publishing (2001) 2, 3, 6



10 Y.N. Truong Vu et al.

9. Lee, R.S., Gimenez, F., Hoogi, A., Miyake, K.K., Gorovoy, M., Rubin, D.L.: A
curated mammography data set for use in computer-aided detection and diagnosis
research. Scientific data 4(1), 1–9 (2017) 2, 3, 6

10. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object
detection. In: ICCV. pp. 2980–2988 (2017) 6

11. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: European conference
on computer vision. pp. 740–755. Springer (2014) 2

12. Liu, Y., Zhang, F., Chen, C., Wang, S., Wang, Y., Yu, Y.: Act like a radiolo-
gist: towards reliable multi-view correspondence reasoning for mammogram mass
detection. PAMI 44(10), 5947–5961 (2021) 7

13. Liu, Y., Zhang, F., Zhang, Q., Wang, S., Wang, Y., Yu, Y.: Cross-view correspon-
dence reasoning based on bipartite graph convolutional network for mammogram
mass detection. In: CVPR. pp. 3812–3822 (2020) 1, 2, 3, 6, 7, 9

14. Lopez, E., Grassucci, E., Valleriani, M., Comminiello, D.: Multi-view breast cancer
classification via hypercomplex neural networks. arXiv:2204.05798 (2022) 7, 8, 9

15. Lotter, W., Diab, A.R., Haslam, B., Kim, J.G., Grisot, G., Wu, E., Wu, K., Onieva,
J.O., Boyer, Y., Boxerman, J.L., et al.: Robust breast cancer detection in mammog-
raphy and digital breast tomosynthesis using an annotation-efficient deep learning
approach. Nature Medicine 27(2), 244–249 (2021) 9

16. Ma, J., Li, X., Li, H., Wang, R., Menze, B., Zheng, W.S.: Cross-view relation
networks for mammogram mass detection. In: 2020 25th International Conference
on Pattern Recognition (ICPR). pp. 8632–8638. IEEE (2021) 1, 2, 3, 6, 7, 9

17. Moreira, I.C., Amaral, I., Domingues, I., Cardoso, A., Cardoso, M.J., Cardoso, J.S.:
Inbreast: toward a full-field digital mammographic database. Academic radiology
19(2), 236–248 (2012) 2

18. Pedemonte, S., Tsue, T., Mombourquette, B., Vu, Y.N.T., Matthews, T., Hoil,
R.M., Shah, M., Ghare, N., Zingman-Daniels, N., Holley, S., et al.: A deep learning
algorithm for reducing false positives in screening mammography. arXiv preprint
arXiv:2204.06671 (2022) 6

19. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object de-
tection with region proposal networks. NeurIPS 28 (2015) 6

20. Ren, Y., Lu, J., Liang, Z., Grimm, L.J., Kim, C., Taylor-Cho, M., Yoon, S., Marks,
J.R., Lo, J.Y.: Retina-match: Ipsilateral mammography lesion matching in a single
shot detection pipeline. In: MICCAI. pp. 345–354. Springer (2021) 1

21. Sampat, M.P., Bovik, A.C., Whitman, G.J., Markey, M.K.: A model-based frame-
work for the detection of spiculated masses on mammography a. Medical physics
35(5), 2110–2123 (2008) 1, 7

22. Sarath, C.K., Chakravarty, A., Ghosh, N., Sarkar, T., Sethuraman, R., Sheet, D.:
A two-stage multiple instance learning framework for the detection of breast cancer
in mammograms. In: EMBC. IEEE (2020) 9

23. Shen, Y., Wu, N., Phang, J., Park, J., Liu, K., Tyagi, S., Heacock, L., Kim, S.G.,
Moy, L., Cho, K., et al.: An interpretable classifier for high-resolution breast cancer
screening images utilizing weakly supervised localization. Medical image analysis
68, 101908 (2021) 7, 9

24. Sun, P., Zhang, R., Jiang, Y., Kong, T., Xu, C., Zhan, W., Tomizuka, M., Li, L.,
Yuan, Z., Wang, C., et al.: Sparse r-cnn: End-to-end object detection with learnable
proposals. In: CVPR (2021) 3, 5, 6, 1

25. Taha, A., Truong Vu, Y.N., Mombourquette, B., Matthews, T.P., Su, J., Singh,
S.: Deep is a luxury we don’t have. In: MICCAI. pp. 25–35. Springer (2022) 7, 9



M&M: A Multi-view and MIL Sparse Detector 11

26. Tian, Z., Shen, C., Chen, H., He, T.: Fcos: Fully convolutional one-stage object
detection. In: CVPR (2019) 6

27. Tulder, G.v., Tong, Y., Marchiori, E.: Multi-view analysis of unregistered medical
images using cross-view transformers. In: MICCAI. Springer (2021) 7, 8

28. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
Ł., Polosukhin, I.: Attention is all you need. NeurIPS 30 (2017) 4

29. Vu, Y.N.T., Mombourquette, B., Matthews, T.P., Su, J., Singh, S.: Wrdet: a
breast cancer detector for full-field digital mammograms. In: Medical Imaging 2022:
Computer-Aided Diagnosis. vol. 12033, pp. 219–230. SPIE (2022) 6, 9

30. Wang, W., Xie, E., Li, X., Fan, D.P., Song, K., Liang, D., Lu, T., Luo, P., Shao,
L.: Pvt v2: Improved baselines with pyramid vision transformer. Computational
Visual Media 8(3), 415–424 (2022) 5

31. Wu, N., Jastrzębski, S., Park, J., Moy, L., Cho, K., Geras, K.J.: Improving the
ability of deep neural networks to use information from multiple views in breast
cancer screening. In: Medical Imaging with Deep Learning. PMLR (2020) 7

32. Yang, Z., Cao, Z., Zhang, Y., Tang, Y., Lin, X., Ouyang, R., Wu, M., Han, M., Xiao,
J., Huang, L., et al.: Momminet-v2: Mammographic multi-view mass identification
networks. Medical Image Analysis 73, 102204 (2021) 1, 7, 9

33. Zhao, Z., Wang, D., Chen, Y., Wang, Z., Wang, L.: Check and link: Pairwise lesion
correspondence guides mammogram mass detection. ECCV (2022) 7, 9, 1



M&M: A Multi-view and MIL Sparse Detector 1

Algorithm 1 M&M Multi-view Cross Attention. This module is to be called
on L191 in the official implementation of Sparse R-CNN head.

1 class MultiviewCrossAttn(nn.Module):
2 def __init__(self , hdim =128, nhead=8, dropout =0.1):
3 self.mv_atn = nn.MultiheadAttention(hdim , nhead)
4 self.dropout_mv = nn.Dropout(dropout)
5 self.norm_mv = nn.LayerNorm(hdim)
6 def forward(self , pro_features):
7 # collect CC and MLO features from the batch dimension
8 cc_feats = pro_features [:, :pro_features.shape [1]//2]
9 mlo_feats = pro_features [:, pro_features.shape [1]//2:]

10 # cross attention to enhance CC features
11 cc_feats2 ,_ = self.mv_atn(query=cc_feats , key=mlo_feats , value=mlo_feats)
12 cc_feats += self.dropout_mv(cc_feats2)
13 cc_feats = self.norm_mv(cc_feats)
14 [...] # vice versa for MLO , omitted here due to space
15 pro_features = torch.stack(cc_feats , mlo_feats , dim =1) # restacking
16 return pro_features # new features used for inst_interact (DynamicConv)

Table A1: Ablation study on (a) effect of number of learnable proposals in a
multi-view only model, and (b) effect of positional encoding. Results are on
OPTIMAM validation set.

(a) The gap between evaluating with and
without negatives ∆ worsens as N in-
creases, showing that multi-view reason-
ing benefits from sparsity.

No. Proposals Training Time APmb AP ∆

10 7.5h 53.6 48.4 -5.2
40 7.7h 54.3 48.4 -5.9
100 8.0h 53.2 47.1 -6.1
400 8.9h 53.0 45.8 -7.2

(b) Different from [13, 16, 33], we found
that positional encodings deliver insignif-
icant boosts in AP and breast AUC. Our
observation is similar to Sparse R-CNN’s
observations ( [24], Tab. 10).

Positional Encoding APmb AP Breast AUC

None 55.2 55.6 0.954
Proposal center 55.1 55.2 0.955
Nipple distance 54.4 55.7 0.955

Table A2: Effect of MIL approach. We also experiment with learnable image-
MIL by applying a FC layer on (1) GAP: the Global Average Pooled proposal
features, and (2) CLS-token: a BERT-like token that summarizes proposal fea-
tures. Results are on OPTIMAM validation set.

Image MIL Breast MIL APmb AP ∆
Breast
AUC

Max Max 54.7 54.0 -0.7 0.952
Mean 54.5 54.6 0.1 0.953

Noisy-OR Max 55.1 55.5 0.4 0.954
Mean 55.2 55.6 0.4 0.954

GAP Max 55.9 54.6 -1.3 0.954
Mean 56.1 54.0 -2.1 0.949

CLS-token Max 55.3 53.7 -1.6 0.947
Mean 56.2 55.0 -1.2 0.951

https://github.com/PeizeSun/SparseR-CNN/blob/dff4c43a9526a6d0d2480abc833e78a7c29ddb1a/projects/SparseRCNN/sparsercnn/head.py#L191
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Table A3: Quantitative detection evaluation with different backbones on two
test sets. On OPTIMAM, across all different backbones, M&M has a small gap
∆ between evaluating with and without negative images. On DDSM, M&M
achieves more than 83% recall at 0.5 FP/image across three different backbones.
Dataset Backbone APmb AP ∆ R@0.1 R@0.25 R@0.5

OPTIMAM

GMIC 50.7 44.6 -6.1 75.4 82.5 86.5
EfficientNet-B0 51.9 45.4 -6.5 78.8 87.1 89.7
ResNet-50 52.8 47.0 -5.8 80.4 87.2 90.0
PVT-B2-Li 57.1 53.6 -3.5 87.7 90.9 92.5

DDSM

GMIC 31.1 27.0 -4.1 52.9 72.2 79.2
EfficientNet-B0 39.1 35.2 -3.9 66.4 74.6 83.2
ResNet-50 38.9 36.6 -2.3 75.1 79.2 83.5
PVT-B2-Li 39.2 37.0 -2.2 80.4 82.6 87.2

Fig. A1: Additional Qualitative Evaluation. Left: without multi-view, the model
misses a mass on the CC view even though it was able to detect the mass on the
MLO view. Right: with multi-view, M&M recalls the mass on both views.

Table A4: Quantitative classification evaluation with different backbones on
3 datasets. All models are trained using OPTIMAM. M&M column denotes
whether the model was a classifier (-) or M&M with the row’s backbone (✓).

Backbone M&M
OPTIMAM Inhouse-A Inhouse-B

Breast Exam Exam Breast Exam
AUC AUC AUC AUC AUC

GMIC - 0.911 0.896 0.814 0.815 0.796
✓ 0.920 0.900 0.835 0.843 0.822

EfficientNet-B0 - 0.940 0.922 0.787 0.850 0.826
✓ 0.941 0.913 0.840 0.852 0.832

PVT-B2-Li - 0.949 0.933 0.820 0.867 0.846
✓ 0.960 0.942 0.920 0.910 0.898

Table A5: Quantitative classification evaluation with different backbones on
CBIS-DDSM. All models are trained using CBIS-DDSM.

Metric/ Backbone GMIC EfficientNet-B0 ResNet-50 PVT-B2-Li

Breast AUC 0.839 0.865 0.836 0.883
Exam AUC 0.835 0.865 0.829 0.883
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